

Posh Predictive Text

PowerShell predictive text for popular command line tools.

Productive messaging on the mobile phone arrived with the introduction of predictive text.
The reduction in time needed to compose and send a message increases efficiency and allows
the user to return to other activities more quickly.

Over time, the complexity of command line tools has increased. For new users the number of
parameters and values can be overwhelming and for existing users entering the same commands
can be repetitive and frustrating when small typing errors are made. Posh Predictive Text
addresses these problems by suggesting text completions for parameters and, in some cases,
parameter values.

Quick Start

Posh Predictive Text is available from PowerShell Gallery and is installed and activated
using the following instructions. A more detailed set of instructions are available on the
installation page.

Prerequisites

Posh predictive text requires PowerShell version 7.2 or greater and PSReadLine version 2.2.6
or greater.

Download and install PowerShell module

Install PoshPredictive text from the PowerShell Gallery. This will download the module to
the local user account. You may be asked for permission if you have not already set PowerShell
gallery as trusted source.

Install-Module -name PoshPredictiveText

Update PowerShell profiles

Add the following commands to the PowerShell profile. To locate the PowerShell profile open
a command prompt and type $PROFILE.

Set-PredictiveTextOption -RemoveCondaTabExpansion
Install-PredictiveText

Installation and configuration

Installing Posh Predictive Text

Install latest stable version into your python environment using Install-Module.

PowerShell Cmdlets

Posh Predictive Text uses cmdlets to implement features. These

PowerShell cmdlets

	Install-PredictiveText

	Get-PredictiveTextOption

	Set-PredictiveTextOption

Install-PredictiveText

SYNOPSIS

Installs Posh Predictive Text and activates the plugin and tab-expansion of command arguments.

SYNTAX

Install-PredictiveText [<CommonParameters>]

DESCRIPTION

Install Posh Predictive Text and activates both the PSReadLine plugin and enables tab-expansion
of command line arguments.

A list of supported commands is provided by Get-PredictiveTextOption -ListCommands.

PARAMETERS

CommonParameters

This cmdlet supports the common parameters: -Debug, -ErrorAction, -ErrorVariable, -InformationAction, -InformationVariable, -OutVariable, -OutBuffer, -PipelineVariable, -Verbose, -WarningAction, and -WarningVariable. For more information, see about_CommonParameters [http://go.microsoft.com/fwlink/?LinkID=113216].

INPUTS

None

OUTPUTS

System.String

System.Management.Automation.CompletionResult

NOTES

RELATED LINKS

GitHub PoshPredictiveText [https://github.com/DiaAzul/Posh-Predictive-Text]
Documentation [https://posh-predictive-text.readthedocs.io/en/latest/]

Get-PredictiveTextOption

SYNOPSIS

Gets options for Posh Predictive Text.

SYNTAX

Version

Get-PredictiveTextOption [-Version] [<CommonParameters>]

ListCommands

Get-PredictiveTextOption [-ListCommands] [<CommonParameters>]

PrintScript

Get-PredictiveTextOption [-PrintScript] [<CommonParameters>]

DESCRIPTION

Gets information about and options set for Posh Predictive Text argument completer.

PARAMETERS

-ListCommands

List commands supported with predictive text.

Type: SwitchParameter
Parameter Sets: ListCommands
Aliases: List, l
Required: False
Position: Named
Default value: None
Accept pipeline input: False
Accept wildcard characters: False

-PrintScript

Print PowerShell script used to initialise Powershell Predictive Text.

Type: SwitchParameter
Parameter Sets: PrintScript
Aliases: Print, p
Required: False
Position: Named
Default value: None
Accept pipeline input: False
Accept wildcard characters: False

-Version

Returns the version.

Type: SwitchParameter
Parameter Sets: Version
Aliases: Ver, v
Required: False
Position: Named
Default value: None
Accept pipeline input: False
Accept wildcard characters: False

CommonParameters

This cmdlet supports the common parameters: -Debug, -ErrorAction, -ErrorVariable, -InformationAction, -InformationVariable, -OutVariable, -OutBuffer, -PipelineVariable, -Verbose, -WarningAction, and -WarningVariable. For more information, see about_CommonParameters [http://go.microsoft.com/fwlink/?LinkID=113216].

INPUTS

None

OUTPUTS

System.String

System.Management.Automation.CompletionResult

NOTES

RELATED LINKS

GitHub PoshPredictiveText [https://github.com/DiaAzul/Posh-Predictive-Text]
Documentation [https://posh-predictive-text.readthedocs.io/en/latest/]

Set-PredictiveTextOption

SYNOPSIS

Sets options for Posh Predictive Text.

SYNTAX

Logging

Set-PredictiveTextOption -LogFile <String> [-LogLevel <String>] [<CommonParameters>]

RemoveCondaTabExpansion

Set-PredictiveTextOption [-RemoveCondaTabExpansion] [<CommonParameters>]

DESCRIPTION

Sets options for Posh Predictive Text.

EXAMPLES

Example 1

Set-PredictiveTextOption -RemoveCondaTabExpansion

Conda installs its own tab-expansion within PowerShell. The conda code has higher precedence and
prevents Posh Predictive Text providing completions for conda commands. This command removes the
conda code and allows Posh Predictive Text to provide completions for conda.

Example 2

Set-PredictiveTextOption -LogFile 'C:\logiles\logfile.txt' -LogLevel INFO

Enables logging of diagnostic messages to a file. Messages are recorded against three levels: ERROR,
WARN, INFO.

PARAMETERS

-LogFile

Enable logging to log file.

Type: String
Parameter Sets: Logging
Aliases:

Required: True
Position: Named
Default value: None
Accept pipeline input: False
Accept wildcard characters: False

-LogLevel

Level of information to log (INFO, WARN, ERROR).
Default: ERROR.

Type: String
Parameter Sets: Logging
Aliases:
Accepted values: INFO, WARN, ERROR

Required: False
Position: Named
Default value: None
Accept pipeline input: False
Accept wildcard characters: False

-RemoveCondaTabExpansion

Remove conda installed tab expansion.

Type: SwitchParameter
Parameter Sets: RemoveCondaTabExpansion
Aliases:

Required: False
Position: Named
Default value: None
Accept pipeline input: False
Accept wildcard characters: False

CommonParameters

This cmdlet supports the common parameters: -Debug, -ErrorAction, -ErrorVariable, -InformationAction, -InformationVariable, -OutVariable, -OutBuffer, -PipelineVariable, -Verbose, -WarningAction, and -WarningVariable. For more information, see about_CommonParameters [http://go.microsoft.com/fwlink/?LinkID=113216].

INPUTS

None

OUTPUTS

System.String

System.Management.Automation.CompletionResult

NOTES

RELATED LINKS

GitHub PoshPredictiveText [https://github.com/DiaAzul/Posh-Predictive-Text]
Documentation [https://posh-predictive-text.readthedocs.io/en/latest/]

Development

PoshPredictiveText is developed using Visual Studio. The majority of the code is C# with a small amount
of PowerShell scripting to register the native argument completer and remove conda tab-expansion code,
if it is installed.

Coding Standards

Coding should follow Microsoft conventions <https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions>.

Additional guidance provided by Google is used where appropriate <https://google.github.io/styleguide/csharp-style.html>.

The following standards are used in the code which may conflict with the above:

	var should be used sparingly and only when the type is very obvious. Use of var can make
code difficult to review if the type is not clear.

	Indentation is four spaces (no tabs).

	Don’t use underscore to indicate private, protected, internal and protected internal fields. It
adds noise.

	const are indicated in capital case. Though this should change to follow Google guidelines.

	Opening braces do start on a new line.

	Do not use braces for single statements where it improves readability, e.g. if statements follwed by
return to exit a method early if (x is null) return null;.

Testing

Testing uses Xunit, which should install from NuGet. Test coverage uses Fine Code Coverage, which is
installed as an extension in Visual Studio.

Code should be covered with reasonable unit tests to validate that it works on multiple platforms.

All tests must pass before code is accepted.

PowerShell Help Documents

PowerShell has traditionally used MAML XML files for console help. These are difficult to prepare by hand.
As an alternative, help files can be written in Markdown and then exported in required formats using the
PowerShell PlatyPS module.

The PlatyPS module is described on GitHub <https://github.com/PowerShell/platyps>

The PlatyPS module must be downloaded and installed on the local development machine.

Install-Module -Name platyPS -Scope CurrentUser
Import-Module platyPS

The base documentation is already created within the folder PowerShellHelpDocs.

To create the external helpfiles run the following command whilist in the PowerShellHelpDocs folder.

New-ExternalHelp .\ -OutputPath en-US\

Source Code Documentation

Documentation is compiled using Sphinx to create a static website that is shared using Read The Docs.
Source documents are generated using several tools and then collated within the sphinx documentation.

	Source code documentation is generated by Doxygen and compiled into an XML file. This file is then
parsed by Breathe/Sphinx-csharp and added to sphinx documents. All source code should be fully
documented.

	The PowerShell Help files are copied into the sphinx source directory and compiled into the sphinx
documents.

	The CHANGELOG.md is copied into the sphinx source directory and added to the sphinx documents.

	Doxygen: https://doxygen.nl/index.html

	Sphinx: https://www.sphinx-doc.org/en/master/

	Breathe: https://breathe.readthedocs.io/en/latest/index.html

	Sphinx-csharp: https://github.com/rogerbarton/sphinx-csharp

	Myst-parser: https://myst-parser.readthedocs.io/en/latest/

	Sphinx RTD Theme: https://sphinx-rtd-theme.readthedocs.io/en/stable/

	Download and install Doxygen (https://doxygen.nl/download.html). If installing on Windows, add the
doxygen bin folder to the path C:Program Filesdoxygenbin.

	Create a Python environment for the Sphinx tools and install packages.

conda create -n poshpredictivetext python=3.10 sphinx sphinx_rtd_theme breathe myst-parser

	Install Sphinx-csharp to add c# support within Sphinx/Breathe.

pip install git+https://github.com/rogerbarton/sphinx-csharp.git

All documentation is generated during packaging and assumes that a ‘conda’ environment named
poshpredictivetext is configured with the required dependencies.

API Documentation

APIs

	Class: CommandAstVisitor

	Predictor: Predictor

	Cmdlet: GetPredictiveText

	Cmdlet: GetPredictiveTextOption

	Cmdlet: InstallPredictiveText

	Cmdlet: SetPredictiveTextOption

Class: CommandAstVisitor

Note: Neither Doxygen nor sphinx-csharp support Python record types. Introduced
in C# 9.

Once record types are recognised then details for Token will appear below.

The token is a record with the following values:

	readonly string Value - Text representing a token on the command line.

	readonly Type Type - The type of the token.

And the following read only properties which return true if the record is
the indicated type:

	bool IsCommand

	bool IsCommandExpression

	bool IsCommandParameter

	bool IsStringConstantExpression

Warning

doxygenclass: Cannot find class “PoshPredictiveText::Token” in doxygen xml output for project “PoshPredictiveText” from directory: /home/docs/checkouts/readthedocs.org/user_builds/posh-predictive-text/checkouts/stable/docs/source/xml

	
class PoshPredictiveText.CommandAstVisitor : AstVisitor

	Implements a visitor for the PowerShell abstract syntax tree. Reads the input no the command line and creates an ordered list of tokens representing user input.

Public Functions

	
override AstVisitAction DefaultVisit (Ast ast)

	Default action if the token has not been processed by a more specific token handler. Adds the token text with a generic text type.

	Param ast

	Node in the abstract syntax tree.

	Return

	Flag to continue processing the abstract syntax tree.

	
override AstVisitAction VisitCommand (CommandAst commandAst)

	Process commandAst node in the abstract syntax tree. Does not process this node and skips to next node in the tree.

	Param commandAst

	Node in the abstract syntax tree.

	Return

	Continue to next node.

	
override AstVisitAction VisitCommandExpression (CommandExpressionAst commandExpressionAst)

	Process CommandExpressionAst node in the abstract syntax tree. Add a token to the list of tokens on the command line.

	Param commandExpressionAst

	

	Return

	Continue to next node

	
override AstVisitAction VisitCommandParameter (CommandParameterAst commandParameterAst)

	Process CommandParameterAst node in the abstract syntax tree. Add token to the list of tokens on the command line.

	Param commandParameterAst

	Node in the abstract syntax tree.

	Return

	Continue to next node.

	
override AstVisitAction VisitConstantExpression (ConstantExpressionAst constantExpressionAst)

	Process ConstantExpressionAst node in the abstract syntax tree. Add token to the list of tokens on the command line.

	Param constantExpressionAst

	Node in the abstract syntax tree.

	Return

	Continue to next node.

	
override AstVisitAction VisitStringConstantExpression (StringConstantExpressionAst stringConstantExpressionAst)

	Process stringConstantExpressionAst node in the abstract syntax tree.

Identifies Gnu/Posix formatted parameters which start with a double dash and reclassifies them as CommandParameterAst type.

Adds token to the list of tokens on the command line.

	Param stringConstantExpressionAst

	Node in the abstract syntax tree.

	Return

	Continue to next node.

Predictor: Predictor

	
class PoshPredictiveText.Init : IModuleAssemblyInitializer, IModuleAssemblyCleanup

	Register the predictor on module loading and unregister it on module un-loading.

Public Functions

	
void OnImport ()

	Gets called when assembly is loaded.

	
void OnRemove (PSModuleInfo psModuleInfo)

	Gets called when the binary module is unloaded.

	
class PoshPredictiveText.Predictor : ICommandPredictor

	PSReadLine plugin providing predictive text capabilities.

Public Functions

	
SuggestionPackage GetSuggestion (PredictionClient client, PredictionContext context, CancellationToken cancellationToken)

	Get the predictive suggestions. It indicates the start of a suggestion rendering session.

	Param client

	Represents the client that initiates the call.

	Param context

	The PredictionContext object to be used for prediction.

	Param cancellationToken

	The cancellation token to cancel the prediction.

	Return

	An instance of SuggestionPackage.

	
bool CanAcceptFeedback (PredictionClient client, PredictorFeedbackKind feedback)

	Gets a value indicating whether the predictor accepts a specific kind of feedback.

	Param client

	Represents the client that initiates the call.

	Param feedback

	A specific type of feedback.

	Return

	True or false, to indicate whether the specific feedback is accepted.

	
void OnSuggestionDisplayed (PredictionClient client, uint session, int countOrIndex)

	One or more suggestions provided by the predictor were displayed to the user.

	Param client

	Represents the client that initiates the call.

	Param session

	The mini-session where the displayed suggestions came from.

	Param countOrIndex

	When the value is greater than 0, it’s the number of displayed suggestions from the list returned in session , starting from the index 0. When the value is less than or equal to 0, it means a single suggestion from the list got displayed, and the index is the absolute value.

	
void OnSuggestionAccepted (PredictionClient client, uint session, string acceptedSuggestion)

	The suggestion provided by the predictor was accepted.

	Param client

	Represents the client that initiates the call.

	Param session

	Represents the mini-session where the accepted suggestion came from.

	Param acceptedSuggestion

	The accepted suggestion text.

	
void OnCommandLineAccepted (PredictionClient client, IReadOnlyList<string> history)

	A command line was accepted to execute. The predictor can start processing early as needed with the latest history.

	Param client

	Represents the client that initiates the call.

	Param history

	History command lines provided as references for prediction.

	
void OnCommandLineExecuted (PredictionClient client, string commandLine, bool success)

	A command line was done execution.

	Param client

	Represents the client that initiates the call.

	Param commandLine

	The last accepted command line.

	Param success

	Shows whether the execution was successful.

Properties

	
Guid Id { get; set; }

	Gets the unique identifier for a subsystem implementation.

	
string? Name { get; set; }

	Gets the name of a command for which suggestion are being made.

	
string Description { get; set; }

	Gets the description of a subsystem implementation.

Cmdlet: GetPredictiveText

	
class PoshPredictiveText.GetPredictiveText : PSCmdlet

	The Posh Predictive Text cmdlet provides suggested completions for command arguments in PowerShell.

Properties

	
string? WordToComplete { get; set; }

	Gets or sets the partial word provided before the user pressed Tab.

	
CommandAst? CommandAst { get; set; }

	Gets or sets the Abstract Syntax Tree (AST) for the current input line.

	
int? CursorPosition { get; set; }

	Gets or sets the position of the cursor when tab was pressed.

Cmdlet: GetPredictiveTextOption

	
class PoshPredictiveText.GetPredictiveTextOption : PSCmdlet

	The Posh Predictive Text cmdlet provides suggested completions for command arguments in PowerShell.

Properties

	
SwitchParameter Version { get; set; }

	Gets or sets the parameter requesting the version to be display.

	
SwitchParameter ListCommands { get; set; }

	Gets or sets the switch indicating List, ListCommand or L flag supported commands.

	
SwitchParameter PrintScript { get; set; }

	Gets or sets a flag to print the PowerShell script used to initialise tab-exapansion of arguments.

Cmdlet: InstallPredictiveText

	
class PoshPredictiveText.InstallPredictiveText : PSCmdlet

	The Posh Predictive Text cmdlet provides suggested completions for command arguments in PowerShell.

Cmdlet: SetPredictiveTextOption

	
class PoshPredictiveText.SetPredictiveTextOption : PSCmdlet

	The Posh Predictive Text cmdlet provides suggested completions for command arguments in PowerShell.

Properties

	
string? LogFile { get; set; }

	Gets or sets the file to which messages will be written.

	
string? LogLevel { get; set; }

	Gets or sets the flag indicating Init command generates and invokes a PowerShell script to add the cmdlet as an Argument Resolver in PowerShell.

	
SwitchParameter RemoveCondaTabExpansion { get; set; }

	Gets or sets the flag that conda tabexpansion should be removed.

Upgrading and change log

Recent versions of Posh Predictive Text have a corresponding git tag for each version
released to PowerShell Gallery [https://pypi.python.org/pypi/django-message-broker].

Change log

	Changelog

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com/en/1.0.0/]
and this project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

[0.1.1] - 2022-09-16

Changed

	Improved documentation for PowerShell Gallery.

[0.1.0] - 2022-09-16

Added

	Initial release.

	New text completions: conda.

Changed

	Nothing

Index

Get-PredictiveText

SYNOPSIS

Gets a list of suggested completions for command line arguments.

SYNTAX

Get-PredictiveText [[-WordToComplete] <String>] [[-CommandAst] <CommandAst>] [[-CursorPosition] <Int32>]
 [<CommonParameters>]

DESCRIPTION

Native argument completer used to provide tab-expansion suggestions on the PowerShell command line.

A list of supported commands is provided by Get-PredictiveTextOption -ListCommands.

EXAMPLES

Example 1

Register-ArgumentCompleter -CommandName $cmdNames -Native -ScriptBlock {
 param(
 [string]$wordToComplete,
 [System.Management.Automation.Language.CommandAst]$commandAst,
 [int]$cursorPosition)

 try {
 $suggestions = Install-PredictiveText -WordToComplete $wordToComplete -CommandAst $commandAst -CursorPosition $cursorPosition
 }
 catch {
 Write-Host "Error."
 }

 $suggestions
}

Registers Install-PredicitiveText as a native argument completer for the commands listed in $cmdNames.

PARAMETERS

-CommandAst

Abstract Syntax Tree for current input line.

Type: CommandAst
Parameter Sets: (All)
Aliases:

Required: False
Position: 1
Default value: None
Accept pipeline input: False
Accept wildcard characters: False

-CursorPosition

Command enered by user at the prompt.

Type: Int32
Parameter Sets: (All)
Aliases:

Required: False
Position: 2
Default value: None
Accept pipeline input: False
Accept wildcard characters: False

-WordToComplete

Value provided by the user before they pressed tab.

Type: String
Parameter Sets: (All)
Aliases:

Required: False
Position: 0
Default value: None
Accept pipeline input: False
Accept wildcard characters: False

CommonParameters

This cmdlet supports the common parameters: -Debug, -ErrorAction, -ErrorVariable, -InformationAction, -InformationVariable, -OutVariable, -OutBuffer, -PipelineVariable, -Verbose, -WarningAction, and -WarningVariable. For more information, see about_CommonParameters [http://go.microsoft.com/fwlink/?LinkID=113216].

INPUTS

None

OUTPUTS

System.String

System.Management.Automation.CompletionResult

NOTES

This cmdlet is intended for uses as a registered argument completer and is not intended for use as a stand-alone cmdlet.

RELATED LINKS

GitHub PoshPredictiveText [https://github.com/DiaAzul/Posh-Predictive-Text]
Documentation [https://posh-predictive-text.readthedocs.io/en/latest/]

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Posh Predictive Text

